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Note on Kinetic Alfvén Waves 

Carl Sovinec, University of Wisconsin-Madison 

February 9, 2009 

 

Like the whistler wave, the kinetic Alfvén wave (KAW) is dispersive, and its response is 

considered to be an important part of two-fluid magnetic reconnection when there is a large 

guide field [1-2].  The description in Ref. [1] refers to standing-wave behavior.  One can 

envision that when field-lines reconnect, the point of reconnection is like the point of a guitar 

string that has been pulled and is about to be released.  In the reconnection process, the field-

lines do not oscillate back and forth, but the dynamics immediately after reconnection is similar 

to the fraction of a standing-wave period that follows the maximum magnetic-field phase.  It is 

argued that with phase speed proportional to wavenumber, these dispersive waves are able to 

sweep magnetic flux out of arbitrarily small reconnection layers [1].  The two-fluid reconnection 

process does not suffer from the choking that occurs with constant phase-speed MHD. 

Unlike the whistler, pressure evolution is critical in KAW dynamics.  Even with relatively 

simple fluid models, pressure changes the differential order of the system.  When deriving 

dispersion relations assuming a uniform background and complex-exponential basis functions, 

the characteristic equation becomes high order, and finding the KAW is nontrivial.  Here, we 

will identify a couple of simplifying approximations to show a derivation that is relatively 

straightforward.  We will use this approximation to find information about the KAW eigenvector 

and hence the physics of this mode.  We will also compare the model with the low-frequency 

MHD limit and then consider how the transition is represented in more complete models. 

The dispersion relations plotted in Fig. 1 have been obtained numerically with the 

DISPERSION code, keeping all terms in a fluid model.  With the logarithmic scales, traces for 

all non-dispersive waves have the same slope, and traces for all !~k
2
 waves have twice the slope 

of all !~k waves.  Comparing nearly parallel propagation (Fig. 1a) with nearly perpendicular 

propagation (Fig. 1b), we see that among the three low-frequency branches, the whistler is the 

dispersive wave for parallel propagation, but the KAW is the dispersive wave for nearly 

perpendicular propagation.  For nearly parallel propagation at small plasma-", the shear Alfvén 

mode starts transitioning to the L-mode ion-cyclotron resonance (!=!i), but when the frequency 

of the sound wave approaches the shear mode, there is another transition for both modes.  Ion 

response in the medium-frequency branch becomes unmagnetized in the sense that the wave 

oscillation is faster than the gyro-period, so the gyro-motion becomes unimportant for the ions. 

For nearly perpendicular propagation, the cyclotron resonance is down-shifted by cos(#), 

where # is the angle between the wavenumber vector k and the background magnetic field.  The 

magnetization aspect of the ion motion for the medium-frequency wave also loses importance at 

lower frequency, and this leads to the transition from shear Alfvén to KAW.  The dispersion 

relation through the transition is necessarily complicated, but we can see that the KAW continues 

above the ion cyclotron frequency.  This suggests that the KAW dispersion relation at higher 

frequencies can be obtained by ignoring 

! 

qivi "B0  force.  With frequencies well below electron 

plasma and cyclotron frequencies, we can also ignore electron inertia.  One more simplification 

in the analytics here is that all thermal energy is in the electrons.  Ion-FLR effects would 

formally be needed otherwise. 
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a)       b) 

 
 

Figure 1.  Numerically obtained dispersion relations for the warm plasma model for a) nearly 

parallel propagation and b) nearly perpendicular propagation. 

 

 

We will use the common plane-wave setup of orienting the background magnetic field, B0 in 

the z-direction, k is in the x-z plane, and the background electrons and ions have no net flow.  

There is also no background electric field.  With the approximations given above, and assuming 

plane-wave 

! 

e
ik"x#i$ t  dependence of the perturbed fields, the equations for the perturbed ion flow 

simplify to 

 

 

! 

"i#vi =
qi

mi
E  (1) 

 

where E is the perturbed electric field.  From this point, we will use qi=e, so the two species have 

the same background number density (n0).  Without inertia, the electron equation of motion is 

 

 

! 

0 = "en0 E + ve # ˆ z B0( )" i kpe  . (2) 

 

With adiabatic electrons, the perturbed electron pressure obeys 

 

 

! 

"pe = #P0k $ ve   . (3) 

 

Combining Eqs. (2) and (3) in component form, we have 
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! 

0 = "en0 Ex + vey B0( )" i #P0
$

kx kxvex
+ kzvez( )

0 = "en0 Ey " vex B0( )
0 = "en0Ez " i

#P0
$

kz kxvex
+ kzvez( )

    . (4) 

 

The second equation of (4) implies that the x-component of electron motion is simply 

! 

E"B0 

drift.  Defining 

! 

" #$P0 men0 = $vth
2
2  and using 

! 

"e = eB0 /me , we can solve for the following 

relations for electron velocity: 

 

 

! 

vex
=

e

me"e
Ey

vey
=

e

me"e
#Ex +

kx

kz
Ez

$ 

% 
& 

' 

( 
) 

vez
=
e

me
#

kx

kz"e
Ey + i

*

+kz
2
Ez
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% 
& 
& 

' 

( 
) 
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 (5) 

 

Equations (1) and (5) will be used to find charge-current density; they effectively identify a 

conductivity through 

! 

J =" #E = en0 vi $ ve( ). 
Our wave equation results from the combination of Faraday’s law and Ampere’s law, 

dropping displacement current as part of a low-frequency approximation.  Using the plane-wave 

spatial dependence in the wave equation produces 

 

 

! 

k
2
I" kk( ) #E = iµ0$J   , (6) 

 

and with the effective conductivity from the equations of motion, we have the following 

homogeneous algebraic equation: 
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    , (7) 

 

where species skin-depths are 

! 

d" = c /#"  and species plasma frequencies are 

! 

"# = n0q#
2
/$0m# . 

At this point, it is helpful to recall that coupling of x- and y-components is strictly from 

! 

E"B0 

motion of the electrons.  Coupling of the y- and z-components is more complicated.  

Compression of flow along k, which includes 

! 

E"B0 drift, couples with electric field via the 

adiabatic electron pressure through the z-component (parallel to B0) of force-balance, as 

represented by the third equation of (4).  The perturbed pressure is also coupled to the y-

component of electron motion through the x-component of the force balance, the first equation of 
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(4).  This equation shows that the y-component of electron flow is a combination of 

! 

E"B0 and 

diamagnetic drifts. 

With the square of the skin depth proportional to mass, and the gyrofrequency inversely 

proportional to mass, we can use 

! 

de
2
"e = di

2
"i  in the off-diagonal terms of Eq. (7).  Multiplying 

all rows of (7) by 

! 

di
2, normalizing frequency by the ion cyclotron frequency (

! 

" #" /$i ), and 

normalizing wavenumber by ion skin depth (

! 

k " k di) simplifies the matrix: 
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kz
2

+1 i" #k x kz

#i" k
2

+1 i"
k x

kz

#k x kz #i"
k x
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2
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Ex

Ey
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' 
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* 
* 
* 

=
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0

0
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' 
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* 
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* 
 . (8) 

 

The " defined here is 

! 

cs
2
/cA
2  and appears from the relations 

! 

cs
2

="me /mi  and 

! 

cA = di"i .  The 

determinant of a matrix of this Hermitian form simplifies: 

 

 

! 

det

A iB "C

"iB D iE

"C "iE F

# 

$ 

% 
% 
% 

& 

' 

( 
( 
( 
= FAD +2BEC " AE2 "DC2 "FB2  , (9) 

 

and for the system (8), the characteristic equation is 

 

 

! 

"4 # 1+ k
2( ) 1+ kz

2( )+ $k2
% 
& ' 

( 
) * 
"2 + $kz

2
1+ k

2( )
2

= 0   . (10) 

 

No limits have been used so far, but recall that we ignore electron inertia and assume cold 

unmagnetized ions.  These approximations limit the dispersion relation to quadratic in 

! 

"
2 . 

Equation (10) is solved with the quadratic formula, but the square-root term is messy without 

taking limits.  For nearly parallel propagation, where 

! 

kz
2
" k

2, we can arrange the discriminant 

into 

! 

1+ k
2( ) 1+ kz

2( )" #k2$ 
% & 

' 
( ) 

2

+ 4#k x
2
1+ k

2( )  and use 

! 

"k x
2  as a small factor.  Keeping just the large 

term leads to the two approximate solutions 

 

 

! 

"2 #
1+ k

2( ) 1+ kz
2( )  ,   ' +'  solution

$k2
                  ,   '%'  solution

& 

' 
( 

) ( 
  . (11) 

 

The ‘+’ branch is the dispersive, right circularly polarized whistler wave, and the ‘"’ branch is 

the demagnetized sound wave at 

! 

k
2

>>1  (see Fig. 1a).  For nearly perpendicular propagation, we 

can use 

! 

"kz
2

<<1 in (10) to find 
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! 
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1+ k
2( ) 1+ kz
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   . (12) 

 

Here, the ‘+’ branch is the compressional Alfvén (CA) wave (what Ref. [3] calls 

‘magnetoacoustic’ at low frequency, in contrast to Ref. [2]) that continues without dispersion at 

! 

"
2
# 1+ $( )k2 for 

! 

kz
2

<<1  and 

! 

k
2

>>1  (Fig. 1b).  Its electric-field polarization rotates between the 

k and B0#k directions (

! 

Ey " iEx k 1+ # ) with a small parallel component,

! 

Ez " Ex kz# k 1+ #( ) .  

[See the discussion for the KAW polarization below, and for the CA polarization, 

! 

kz  is treated as 

a small parameter in the matrix.] 

The ‘"’ solution of (12) is the KAW (see Fig. 1b).  For 

! 

kz
2

<<1  and wavelengths that are small 

relative to the ion skin depth (

! 

k
2

>>1), which is necessarily the case for this mode with our 

restriction on frequencies, the dispersion relation further simplified to 

 

 

! 

"
2
#

$

1+ $
kz

2
k

2
    or

"2 #
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2
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2
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2

+cs
2
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2
k

2
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 (13) 

 

in agreement with Eq. (8) of Ref. [1].  Using this relation and 

! 

k x " k  in Eq. (8), 
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  , (14) 

 

helps us identify the eigenmodes.  If " is not too small, we can also ignore the 

! 

"kz
2 in the zz-

element of the matrix.  The third row is approximately 

! 

"i # /1+ #  times the second row to order 

! 

kz k .  This suggests the phase relation 

 

 

! 

Ey " #i
$

1+ $
Ez   . (15) 

 

Using (15) in the first row of (14) produces 
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! 

Ex "
1

1+ #
kkzEz   . (16) 

 

This does not satisfy the second and third rows exactly, but with 

! 

kz
2

<<1 , it is an approximate 

solution for the eigenvector. 

To verify this approximate dispersion relation and polarization, we compare with a KAW 

eigenmode generated by the DISPERSION code for the full warm plasma model and parameters 

of 

! 

k =19.6 , 

! 

kz = 0.31, and 

! 

" = 0.64 .  The computation is similar to the KAW shown in Fig. 1b, 

except that " is much larger, which makes Ey comparable to Ez in magnitude.  The frequency 

computed from DISPERSION is 

! 

" = 3.27 , whereas Eq. (13) predicts 3.77.  Also, DISPERSION 

produces 

! 

Ex Ez = 3.0  and 

! 

Ey Ez = "0.65i , whereas Eqs. (16) and (14) predict 3.7, and -0.62i, 

respectively.  The polarization information from the DISPERSION calculation is also displayed 

in Fig. 2.  As time increases, the phase angle decreases at a fixed location, so the components of 

E that are perpendicular to k rotate in the right-handed sense.  There is also a larger electrostatic 

component of E that is parallel to k. 

To understand the dispersive nature of the KAW, it is helpful to draw an analogy with the 

more familiar whistler wave with k nearly parallel to B0.  At frequencies above the ion cyclotron 

frequency, there is no ion drift motion, so 

! 

E"B0 electron drift leads to net charge current 

density, and this is the dominant contribution to charge current in the whistler.  The upper-left 

2#2 submatrix of (8) produces the !~k
2
 dispersion relation and the circular polarization about k 

with Ex leading Ey. 

Tilting the k-vector to be nearly in the x-direction for the KAW, we have elliptical 

polarization in the y-z plane with Ey leading Ez.  Considering Eq. (4) and the discussion following 

Eq. (7), electron 

! 

E"B0 drift from Ey is coupled to the compressive flow that leads to pressure 

perturbations, and pressure perturbations couple with Ez through force-balance parallel to B0.  

Substituting the KAW dispersion (13) into just the zz-element of (8) makes the lower-right 2#2 

submatrix of (8) look similar to the whistler submatrix with k
2
 terms on the diagonal and !1

 

terms on the off-diagonal.  The critical role of electron 

! 

E"B0 drift in the !~k
2
 dispersion is 

similar to the whistler.  What’s different is the coupling with pressure and the potentially 

significant Ex.  With the approximations used in (14) to find (16), Ex generates ion current in the 

x-direction from unmagnetized acceleration parallel to E.  For the electrons, the discrepancy 

between the electric-field and pressure forces in this direction is balanced by the Lorentz force, 

hence there is a combination 

! 

E"B0 and diamagnetic drifts in the y-direction. 
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Figure 2.  KAW polarization information from the DISPERSION code for 

! 

k =19.6 , 

! 

kz = 0.31, 

and 

! 

" = 0.64 .  Note that the ion current density vectors in b) and the electron current density 

vectors in c) have separate scales; the ion current density and the x-component of the electron 

current density are about 100 times smaller than the y- and z- components of electron current 

density. 
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This behavior can be compared with the low-frequency limit, 

! 

"
2

<<1, where ions have 

! 

E"B0 

in the directions perpendicular to E and polarization drift parallel to E in the x-y plane.  The x- 

and y-components of (1) are replaced with 

 

 

! 

vix
=

e

mi"i
2
#i$Ex +"iEy( )

viy
=

e

mi"i
2
#"iEx # i$Ey( )

 (17) 

 

which makes the algebraic system 

 

 

! 

kz
2 "#2 0 "k x kz

0 k
2 "#2 i#

k x

kz

"k x kz "i#
k x

kz
k x
2

+1"
#2

$kz
2
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' 
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' 
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' 
' 
' 
' 
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* 
* 
* 
* 
* 
* 
* 
* 

+

Ex

Ey

Ez

% 

& 

' 
' 
' 

( 

) 

* 
* 
* 

=

0

0

0

% 

& 

' 
' 
' 

( 

) 

* 
* 
* 
    . (18) 

 

Here, currents from electron and ion 

! 

E"B0 drifts cancel except for the electron drifts that 

perturb pressure.  In this limit, we also have 

! 

k
2

<<1 , so the dispersion relation from (18) 

 

 

! 

kz
2 "#2( ) k

2 "#2( ) k x2 +1"
#2

$kz
2

% 

& 

' 
' 

( 

) 

* 
* "#

2 k x
2

kz
2

+ 

, 

- 
- 

. 

/ 

0 
0 
" k x

2
kz
2
k
2 "#2( ) = 0 (19) 

 

is approximately 

 

 

! 

kz
2 "#2( ) k

2 "#2( ) $kz2 "#2( )"#2$k x2% 
& ' 

( 
) * 
+ 0  (20) 

 

when keeping terms that are no more than third order in 

! 

k
2, 

! 

"
2 , or combinations of these small 

factors after multiplying by 

! 

"kz
2 .  The shear wave has 

! 

"
2

= kz
2 , and its eigenvector has E in the x-

direction.  The transition of the shear wave to the KAW involves the net x-y ion current changing 

from ion polarization in the MHD limit to simple acceleration and suppression of the ion 

! 

E"B0 

drift so that pressure is coupled to electron current. 

After getting familiar with the dispersion relations for the 

! 

"
2

>>1 and 

! 

"
2

<<1 limits, it is 

easier to find the transition from the shear Alfvén wave to the KAW in a more complete model.  

Keeping the general relation for cold ions, 

! 

"i#mivi = e E+ vi $B0( ), we have the following 

relation for each component: 
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! 

vix
=

e

mi "i
2
#$2( )

#i$Ex +"iEy( )

viy
=

e

mi "i
2
#$

2( )
#"iEx # i$Ey( )

viz
=

ie

mi$
Ez

    , (21) 

 

which becomes (1) in the high-frequency limit and the x- and y-components become (17) in the 

low-frequency limit.  We will also make the electron model a little more general.  Equation (5) is 

not valid for k perpendicular to B0, and one could ask whether this limiting behavior is related to 

the KAW transition.  Adding electron momentum only to the z-component of (4) allows us to 

cover the range where the electrons become adiabatic.  We will not need frequencies anywhere 

near the electron cyclotron resonance, so leaving electron inertia (polarization drift) out of the x- 

and y- components is not inconsistent.  Instead of (5), we now have 
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vex
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e

me"e
Ey

vey
= #

e

me"e
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' 
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) 

* 
+ 

    . (22) 

 

With the same steps that led from (1) and (5) to (8), combining (21) and (22) into a conductivity 

relation and using this more general conductivity in the wave equation produces 

 

 

! 

kz
2

+K i"K #k x kz

#i"K k
2

+K +
$k x

2

1#mi$kz
2
me"

2
#i
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    , (23) 

 

where 

! 

K "#
2

#
2
$1( ) represents ion inertia effects.  For the xx- and yy-elements, ion 

polarization is 

! 

K"#$
2 at low frequency. and ion acceleration is 

! 

K"1 at high frequency.  This 

factor also represents the cancellation of electron 

! 

E"B0 at low frequency where the xy- and yx-

elements are proportional to 

! 

"
3 . 

From the lower-right 2#2 of the matrix in Eq. (23), we see that the equilibration of electron 

pressure with electric field is a process that is distinct from any other transition.  In conditions 
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where 

! 

"
2

>> mi#kz
2
/me , the electrons are not able to equilibrate fast enough.  Without 

displacement current, there are no plasma oscillations, 

! 

Ez " 0, and the only physically 

meaningful wave is the compressional wave.  The transition to 

! 

"
2

<< mi#kz
2
/me  occurs with a 

very small parallel component of k, because it is an electron thermal process that is evident from 

the mass ratio appearing with ".  Note that in this condition of equilibrated electrons, (23) looks 

very similar to (8), apart from the ion term K and a term that is proportional to me/mi in the yy-

element.  We conclude that electron equilibration is not part of the transition from the shear 

Alfvén wave to the KAW; though, it is necessary to have a KAW. 

With equilibrated electrons, the dispersion relation from (23) is 

 

 

! 

"4K 2 #"2 k
2

+K( ) kz2 +K( )+ $ K k x
2

+Kkz
2( )+ k x

2
kz
2
1#K( )

2% 
& ' 

( 
) * 

+ 
, 
- 

. 
/ 
0 

+ $kz
2
k
2

+K( ) kz2 +K +Kk x
2( ) = 0

    , (24) 

 

which limits to Eq. (10) for 

! 

K"1 and to Eq. (20) for

! 

K"#$
2 and consistent ordering of small 

factors.  The first term of (24) is important for the fast wave but not the shear Alfvén/KAW 

branch.  For this branch, we have 

 

 

! 

"2

kz
2

kz
2

+K( )+
#

k
2

+K( )
K k x

2
+Kkz

2( )+ k x
2
kz
2
1$K( )

2% 
& ' 

( 
) * 

+ 

, 
- 

. 
- 

/ 

0 
- 

1 
- 
$ # kz

2
+K +Kk x

2( ) 2 0     . (25) 

 

At low frequency and dropping second order in 

! 

k
2, 

! 

"
2 , or combinations thereof in (25), the 

shear Alfvén contribution 

! 

kz
2

+K  can be factored.  With increasing wavenumber such that 

! 

k
2 is 

not small, 

! 

kz
2

+K  cannot be factored from the last term of (25).  Nonetheless, if 

! 

"k
2

<<1, the 

frequency remains low, 

! 

"
2
~ kz

2 .  The transition to KAW therefore occurs when 

! 

"k
2

= " di
2
k
2

= #s
2
k
2 is approximately unity, which forces the dispersion relation to be a balance 

between both terms in (25). 

A final point is that the KAW is lost at sufficiently large wavenumber.  When 

! 

kz
2 is not small, 

but 

! 

"k
2

<<1, Eqs. (11) and (12) are both valid and produce the same solutions.  The CA wave 

becomes the whistler, and the KAW becomes the demagnetized sound wave.   
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